近几年,技术的进步,科技的发展带动了一些新的领域——人工智能。我们只知道人工智能是通过以互联网为载体,搭载物联网的结合应用。可人工智能的具体核心技术和发展并不了解,今天我们具体看看。
人工智能是对计算机系统如何能够履行那些只有依靠人类智慧才能完成的任务的理论研究。例如,视觉感知、语音识别、在不确定条件下做出决策、学习、还有语言翻译等。值得一提的是,随着计算机为解决新任务挑战而升级换代并推而广之,人工智能的定义随着时间而演变,这一现象称之为“人工智能效应”。其实,人工智能并不是一个新名词。实际上,这个领域在20世纪50年代就已经开始启动,这段探索的历史被称为“喧嚣与渴望、挫折与失望交替出现的时代”。20世纪80年代末,几乎一半的“财富500强”都在开发或使用“专家系统”,这是一项通过对人类专家的问题求解能力进行建模,来模拟人类专家解决该领域问题的人工智能技术。20世纪90年代在人工智能领域的技术成果始终处于低潮。反而是神经网络、遗传算法等科技得到了新的关注,这一方面是因为这些技术避免了专家系统的若干限制,另一方面是因为新算法让它们来看看人工智能的重要的因素和技术:
1)摩尔定律
在价格、体积不变的条件下,计算机的计算能力可以不断增长。这就是被人们所熟知的摩尔定律,包括人工智能研究人员使用的计算类型。数年以前,先进的系统设计只能在理论上成立但无法实现,因为它所需要的计算机资源过于昂贵或者计算机无法胜任。今天,我们已经拥有了实现这些设计所需要的计算资源。
2)大数据
得益于互联网、社交媒体、移动设备和廉价的传感器,这个世界产生的数据量急剧增加。随着对这些数据价值的不断认识,用来管理和分析数据的新技术也得到了发展。大数据是人工智能发展的助推剂,这是因为有些人工智能技术使用统计模型来进行数据的概率推算,比如图像、文本或者语音,通过把这些模型暴露在数据的海洋中,使它们得到不断优化。
3)互联网和云计算
互联网和云计算可以被认为是人工智能基石有两个原因,第一,它们可以让所有联网的计算机设备都能获得海量数据。这些数据是人们推进人工智能研发所需要的,因此它可以促进人工智能的发展。第二,它们为人们提供了一种可行的合作方式有时显式有时隐式以此来帮助人工智能系统进行训练。
4)新算法
算法是解决一个设计程序或完成任务的路径方法。最近几年,新算法的发展极大提高了机器学习的能力,这些算法本身很重要,同时也是其他技术的推动者,比如计算机视觉。
4、认知技术
认知技术是人工智能领域的产物,它们能完成以往只有人能够完成的任务。而它们正是商业和公共部门的领导者应该关注的。
然后来看看人工智能的基本常识:
1)计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。机器视觉作为一个相关学科,泛指在工业自动化领域的视觉应用。在这些应用里,计算机在高度受限的工厂环境里识别诸如生产零件一类的物体,因此相对于寻求在非受限环境里操作的计算机视觉来说目标更为简单。
2)机器学习指的是计算机系统无需遵照显式的程序指令而只是依靠暴露在数据中来提升自身性能的能力。其核心在于,机器学习是从数据中自动发现模式,模式一旦被发现便可用于做预测。比如,给予机器学习系统一个关于交易时间、商家、地点、价格及交易是否正当等信用卡交易信息的数据库,系统就会学习到可用来预测信用卡欺诈的模式。处理的交易数据越多,预测就会越好。
3)自然语言处理是指计算机拥有的人类般文本处理的能力,比如,从文本中提取意义,甚至从那些可读的、风格自然、语法正确的文本中自主解读出含义。一个自然语言处理系统并不了解人类处理文本的方式,但是它却可以用非常复杂与成熟的手段巧妙处理文本,例如自动识别一份文档中所有被提及的人与地点;识别文档的核心议题;或者在一堆仅人类可读的合同中,将各种条款与条件提取出来并制作成表。以上这些任务通过传统的文本处理软件根本不可能完成,后者仅能针对简单的文本匹配与模式进行操作。
4)机器人技术是将机器视觉、自动规划等认知技术整合至极小却高性能的传感器、致动器、以及设计巧妙的硬件中,这就催生了新一代的机器人,它有能力与人类一起工作,能在各种未知环境中灵活处理不同的任务。例如无人机,还有可以在车间为人类分担工作的机器人,还包括那些从玩具到家务助手的消费类产品。
5)语音识别技术主要是关注自动且准确的转录人类的语音。该技术必须面对一些与自然语言处理类似的问题,在不同口音的处理、背景噪音、区分同音异形异义词方面存在一些困难,同时还需要具有跟上正常语速的工作速度。语音识别系统使用一些与自然语言处理系统相同的技术,再辅以其他技术。
然后看看认知技术的广泛使用领域:
1)银行业:自动欺诈探测系统使用机器学习可以识别出预示着欺诈性付款行动的行为模式;借助语音识别技术能够自动完成电话客服;声音识别可以核实来电者的身份
2)医疗健康领域:美国有一半的医院采用自动语音识别来帮助医生自动完成医嘱抄录,而且使用率还在迅速增长;
3)生命科学领域:机器学习系统被用来预测生物数据和化合物活动的因果关系,从而帮助制药公司识别出最有前景的药物
4)媒体与娱乐行业:许多公司正在使用数据分析和自然语言生成技术,自动起草基于数据的的公文材料,比如公司营收状况、体育赛事综述等。
5)石油与天然气:厂商将机器学习广泛运用在矿藏资源定位、钻井设备故障诊断等众多方面。
6)公共部门:|出于监控、合规和欺诈检测等特定目的,公共部门也已经开始使用认知技术。
7)零售商:零售商利用机器学习来自动发现有吸引力的交叉销售定价和有效的促销活动。
越来越多的企业会找到一些创新性应用来显著改善他们自身的表现或者创造新功能,以增强他们的竞争地位。这些技术将如何激发创新并提升经营表现。
Friendship link