首页>>新闻资讯>>行业新闻

认识一下大数据平台传统数据仓库的问题和解决方式
   来源:    添加日期:2019-07-01    

   越来越多的信息管理系统搭建,也产生了大量的数据。那么为了数据的安全性和可操作性,需要数据平台来支撑,具体细节我们一起来看看。
       大部分BI系统都基于关系型数据库,关系型数据库使用SQL语句进行操作,但是SQL在多维操作和分析的表示能力上相对较弱,所以Cube有自己独有的查询语言MDX,MDX表达式具有更强的多维表现能力,所以以Cube为核心的分析系统基本占据着数据统计分析的半壁江山,大多数的数据库服务厂商直接提供了BI套装软件服务,轻易便可搭建出一套Olap分析系统。
逐渐显露出来:
       BI系统更多的以分析业务数据产生的密度高、价值高的结构化数据为主,对于非结构化和半结构化数据的处理非常乏力,例如图片,文本,音频的存储,分析。由于数据仓库为结构化存储,在数据从其他系统进入数据仓库这个东西,我们通常叫做ETL过程,ETL动作和业务进行了强绑定,通常需要一个专门的ETL团队去和业务做衔接,决定如何进行数据的清洗和转换。随着异构数据源的增加,例如如果存在视频,文本,图片等数据源,要解析数据内容进入数据仓库,则需要非常复杂等ETL程序,从而导致ETL变得过于庞大和臃肿。当数据量过大的时候,性能会成为瓶颈,在TB/PB级别的数据量上表现出明显的吃力。

综治9+X信息网格化
       数据库的范式等约束规则,着力于解决数据冗余的问题,是为了保障数据的一致性,但是对于数据仓库来说,我们并不需要对数据做修改和一致性的保障,原则上来说数据仓库的原始数据都是只读的,所以这些约束反而会成为影响性能的因素。ETL动作对数据的预先假设和处理,导致机器学习部分获取到的数据为假设后的数据,因此效果不理想。例如如果需要使用数据仓库进行异常数据的挖掘,则在数据入库经过ETL的时候就需要明确定义需要提取的特征数据,否则无法结构化入库,然而大多数情况是需要基于异构数据才能提取出特征。在一系列的问题下,以Hadoop体系为首的大数据分析平台逐渐表现出优异性,围绕Hadoop体系的生态圈也不断的变大,对于Hadoop系统来说,从根本上解决了传统数据仓库的瓶颈的问题,但是也带来一系列的问题:

一、从数据仓库升级到大数据架构,是不具备平滑演进的,基本等于推翻重做。

二、大数据下的分布式存储强调数据的只读性质,所以类似于Hive,HDFS这些存储方式都不支持update,HDFS的write操作也三、不支持并行,这些特性导致其具有一定的局限性。
基于大数据架构的数据分析平台侧重于从以下几个维度去解决传统数据仓库做数据分析面临的瓶颈
       一、分布式计算:分布式计算的思路是让多个节点并行计算,并且强调数据本地性,尽可能的减少数据的传输,例如Spark通过RDD的形式来表现数据的计算逻辑,可以在RDD上做一系列的优化,来减少数据的传输。
       二、分布式存储:所谓的分布式存储,指的是将一个大文件拆成N份,每一份独立的放到一台机器上,这里就涉及到文件的副本,分片,以及管理等操作,分布式存储主要优化的动作都在这一块。
       三、检索和存储的结合:在早期的大数据组件中,存储和计算相对比较单一,但是目前更多的方向是在存储上做更多的手脚,让查询和计算更加高效,对于计算来说高效不外乎就是查找数据快,读取数据快,所以目前的存储不单单的存储数据内容,同时会添加很多元信息,例如索引信息。像类似于parquet和carbondata都是这样的思想。

睿格软件

服务热线

0371-56086616

13213119956(24小时)

微信客服

点击或微信扫一扫
马上联系

收起 >